1 (a (i) _____

aqueous solution	lead Pb	magnesium Mg	zinc Zn	silver Ag
lead (II) nitrate				
magnesium nitrate	X ×		×	×
zinc nitrate	×	1		×
silver(I) nitrate	~	~	~	

each horizontal line correct (1)

(ii) Zn (1)

An arrow from Zn to Zn^{2+} (1) [2]

(iii)
$$Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$$
 (1) [1]

(b) correct direction from zinc to lead (1)

(ii) metals react by losing electrons (1)

the more reactive metal/zinc will lose electrons more readily (making the electrode negatively charged). (1) [2]

(iii) manganese **and** zinc are more reactive than lead (and/or copper) (1)

lead is more reactive than copper (1)

(iv) the polarity of a Mn/Zn (cell)
 or the voltages of Zn/Pb and Mn/Pb (cells) (1)

[Total: 12]

[3]

[1]

[1]

[2]

2	(a	(i)	measure melting point pure sample would melt at 135°C OR impure would melt lower than 135°C	NOT just heating	[1] [1
		(ii)	$C_3H_4O_4$		[1]
	((iii)	$C_2H_4O_2$ OR CH_3COOH ethanoic OR acetic acid both marks are independent of each other		[1] [1]
	((iv)	ester	NOT organic, covalent	[1]
	(b)	 (i) malonic is a weaker acid/less dissociated OR sulfuric acid is a stronger acid/more dissociated NOT sulfuric acid is a strong acid 			[1]
		(ii)	add piece of suitable metal, e.g. Mg ALLO	V A <i>l</i> , Ca NOT K, Na, Cu	[1]
			sulfuric acid reacts faster OR malonic react	s slow er	[1]
			OR as above add a piece of $CaCO_3$, if soluble of		
			OR measure electrical conductivity		[1]
			sulfuric acid is the bett er conductor OR malonic acid poor er conductor NOT sulfuric acid is a good conductor		[1]
	(c)	(i)	sodium malonate <u>and</u> water		[1]
		(ii)	CuSO ₄ H ₂ O		[2]
		(iii)	CH ₂ (COO) ₂ Mg H ₂		[2]
		(iv)	K_2SO_4 CO_2 and H_2O	NOT H ₂ CO ₃	[2]
					[Total: 16]

3	•	(a because they have more than one oxidation state or valency / form ions with different charges			
		there are two iron oxides (iron(III) oxide and iron(II) oxide) / iron forms Fe ²⁺ and Fe ³⁺ compounds / iron forms iron(II) and iron(III) compounds [1]			
	(b) (i)	to remove the precipitate / remove the silver(I) chromate(VI) / remove the residue [1]			
	(ii)	to remove <u>soluble</u> impurities / remove named <u>soluble</u> salt e.g. potassium nitrate / remove reactants			
	(iii)	to dry solid / to remove water [1]			
	(c) (i)	need <u>one</u> mole of potassium chromate(VI) for <u>two</u> moles of silver(I) nitrate / correct references to mole ratio [1]			
	(ii)	mass of AgNO3 needed is 170 × 0.2 × 0.1 = 3.4g[2]NOTE: if answer given is 34 they have omitted 0.1[2]ALLOW: (1) ecf			
	(iii)	number of moles of $AgNO_3$ used = 0.02 × 0.2 = 0.004 [1]			
		number of moles of Ag_2CrO_4 formed = 0.002 [1]			
		mass of one mole of $Ag_2CrO_4 = 332g$			
		mass of Ag2CrO4 formed = 0.664g[1]NOTE: use ecf when appropriate			
		[Total: 11]			

		., .		
4	(a		c acid; ium hydroxide / carbonate / hydrogen carbonate;	[1] [1]
		сор	per(II) oxide / hydroxide / carbonate;	[1]
		any	named soluble chloride;	[1]
			ept: <i>hydrochloric acid hydrogen chloride</i> er(I) nitrate / ethanoate / sulfate;	[1]
			st be soluble silver salt not silver oxide / carbonate	[']
		zinc	:(II) sulfate	[1]
	(b)	(i)	$Ag^{+}(aq) + Cl (aq) \rightarrow AgCl(s)$ equation correct state symbols missing [1]	
		(ii)	$ZnCO_3 + H_2SO_4 \rightarrow ZnSO_4 + CO_2 + H_2O$ correct formula for zinc sulfate = 1	[2
			[Total	l: 10]
5	(a	(i)	ACDB	[1]
		(ii)	speed (or rate) increases as <u>concentration</u> increases / time decreases as <u>concent</u> increases; rate or speed or time depends on (concentration) of H ⁺ or hydrogen ions; B is slow because propanoic acid is weak or doesn't dissociate or weakly ionises; or B is slow because HC <i>1</i> and H ₂ SO ₄ are stronger or ionise or dissociate more propanoic; D slow <u>er</u> than C because C is more concentrated than D / ORA; A is fast because H ⁺ concentration high (note: this would also score second mark already awarded) / H ₂ SO ₄ is diprotic or dibasic or $2H^+$; time is inversely proportional to rate / owtte / ORA;	[1] [1] than [1] [1]
	(b	ind <u>pa</u> ch ind pid ma ca ma	talyst; ore (successful) collisions; wers E _a ;	[1] [1] [1] [1] [1] [1] [1] [1] nax [5]

6 (a) proton donor;

(b)	add Universal indicator / determine pH / pH paper; ethylamine has lower pH / ORA; or	[1] [1] [1]
	equal concentration of both (solutions); measure conductivity of aqueous ethylamine and sodium hydroxide; ethylamine will have low <u>er</u> conductivity / sodium hydroxide will have high <u>er</u> conductivity;	[1] [1] [1]
(c)	add strong(er) base / NaOH / KOH; warm / heat;	[1] [1]
(d)	hydroxide ions / OH reacts with iron(III) ions / Fe ³⁺ ;	[1]
	or iron(III) hydroxide / Fe(OH) ₃ (forms as a brown precipitate); note: balanced or unbalanced ionic equation i.e. $Fe^{3+} + (3)OH \rightarrow Fe(OH)_3$ scores marks	[1] both